Thrombin stimulates wortmannin-inhibitable phosphoinositide 3-kinase and membrane blebbing in CHRF-288 cells.
نویسندگان
چکیده
We have investigated thrombin-stimulated morphological changes and the activation of phosphoinositide 3-kinase (PI 3-K), as manifested by the accumulation of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (labelled with 32P or myo-[3H]inositol), in CHRF-288 cells, a leukaemic cell line derived from a platelet progenitor cell. We report that these cells, when exposed to thrombin or SFLLRN (the peptide Ser-Phe-Leu-Leu-Arg-Asn, a thrombin-receptor ligand) rapidly change shape, forming membrane 'blebs', detectable by differential interference contrast or confocal microscopy, as well as labelled 3-phosphorylated phosphoinositides. The 'blebs' are distinguishable from 'ruffles' or lamellae, since they do not contain phalloidin-detectable actin. Studies with permeabilized cells indicate that PI 3-K is activated synergistically by thrombin+guanosine 5'[gamma-thio]triphosphate. Two forms of PI 3-K, i.e. PI 3-K(gamma) and p85/PI 3-K, regulated by G beta gamma subunits of heterotrimeric G-protein and the small G-protein Rho, respectively, are present in these cells, as is true for platelets. Wortmannin, a known potent and specific inhibitor of PI 3-K activities, inhibits thrombin-stiumlated accumulation of 3-phosphorylated phosphoinositides in a dose-dependent manner (IC50 approximately 10nM), without affecting phospholipase C activation. Pretreatment of CHRF-288 cells with either wortmannin (100 nM) or an unrelated synthetic PI 3-K inhibitor, LY294002 (50 microM), abolishes thrombin-receptor-stimulated blebbing. These results suggest that thrombin-stimulated accumulation of 3-phosphorylated phosphoinositide(s) is required for the shape-change response in CHRF-288 cells.
منابع مشابه
Initiation and maintenance of NGF-stimulated neurite outgrowth requires activation of a phosphoinositide 3-kinase.
Application of nerve growth factor (NGF) to PC12 cells stimulates a programme of physiological changes leading to the development of a sympathetic neuron like phenotype, one aspect of which is the development of a neuronal morphology characterised by the outgrowth of neuritic processes. We have investigated the role of phosphoinositide 3-kinase in NGF-stimulated morphological differentiation th...
متن کاملInsulin stimulates membrane conductance in a liver cell line: evidence for insertion of ion channels through a phosphoinositide 3-kinase-dependent mechanism.
Activation of insulin receptors stimulates a rapid increase in the ion permeability of liver cells. To evaluate whether this response involves insertion of ion channels, plasma membrane turnover was measured in a model liver cell line using the fluorescent membrane marker FM1-43. Under basal conditions, the rate of constitutive membrane turnover was approximately 2%min(-1), and balanced exocyto...
متن کاملUncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism.
UCP3 is a mitochondrial membrane protein expressed in humans selectively in skeletal muscle. To determine the mechanisms by which UCP3 plays a role in regulating glucose metabolism, we expressed human UCP3 in L6 myotubes by adenovirus-mediated gene transfer and in H(9)C(2) cardiomyoblasts by stable transfection with a tetracycline-repressible UCP3 construct. Expression of UCP3 in L6 myotubes in...
متن کاملPhosphatidylinositol 3-kinase mediates mitogen-induced human airway smooth muscle cell proliferation.
Hypertrophy and hyperplasia of airway smooth muscle (ASM) are important pathological features that contribute to airflow obstruction in chronic severe asthma. Despite considerable research effort, the cellular mechanisms that modulate ASM growth remain unknown. Recent evidence suggests that mitogen-induced activation of phosphoinositide (PI)-specific phospholipase C (PLC) and PI-dependent calci...
متن کاملEvidence for Apical Endocytosis in Polarized Hepatic Cells: Phosphoinositide 3-Kinase Inhibitors Lead to the Lysosomal Accumulation of Resident Apical Plasma Membrane Proteins
The architectural complexity of the hepatocyte canalicular surface has prevented examination of apical membrane dynamics with methods used for other epithelial cells. By adopting a pharmacological approach, we have documented for the first time the internalization of membrane proteins from the hepatic apical surface. Treatment of hepatocytes or WIF-B cells with phosphoinositide 3-kinase inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 314 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1996